Acta Cryst. (1996). C52, 1226-1228

3,3-Bis(2-imidazolyl)propionic Acid Hemihydrate

Bettina Gimeno," Amparo Sancho," Lucia Soto" and Jean-Pierre Legros"
"Departament de Quimica Inorganica, Facultat de Farmacia, Universitat de Valéncia, Avda. Vicent Andrés Estellés, s/n, 46100-Burjassot (Valéncia), Spain. and ${ }^{1}$ Laboratoire de Chimie de Coordination du CNRS, Unité 8241, lié par convention à l'Université Paul Sabatier et, à l'Institut National Polytechnique, 205 route de Narbonne. 31077 Toulouse CEDEX. France. E-mail: legros@lcctoul. lcc-toulouse.fr

(Received 5 October 1995: accepted 30 Norember 1995)

Abstract

Slow evaporation of an aqueous solution of 3,3-bis(2imidazolyl)propionic acid monohydrate, $\mathrm{C}_{9} \mathrm{H}_{11} \mathrm{~N}_{4} \mathrm{O}_{2}$.$\mathrm{H}_{2} \mathrm{O}$, yields crystals of the hemihydrate, $\mathrm{C}_{9} \mathrm{H}_{10} \mathrm{~N}_{4} \mathrm{O}_{2}$.$0.5 \mathrm{H}_{2} \mathrm{O}$. In both hydrates the molecules of 3.3 -bis($2-$ imidazolyl)propionic acid are in a zwitterionic form containing $-\mathrm{COO}^{-}$and - (imidazole) H^{+}residues, i.e. 3-(2-imidazolyl)-3-(2-imidazolio)propionate. The crystal structure of the hemihydrate contains two crystallographically independent zwitterions and one water molecule linked by hydrogen bonds. In the two molecules of the hemihydrate, as well as in the monohydrate, the dihedral angles between the planes of the imidazole rings and the carboxylate group show remarkable differences, indicating that 3,3 -bis(2-imidazolyl)propionic acid can be used as a flexible ligand.

Comment

This paper is part of a general study of the structural properties of transition metal complexes which contain carboxylate and imidazole groups. Such compounds are commonly used for modelling the active centre of various metalloproteins, since these groups are the most important and versatile binding sites for metals in many biological systems (Creighton, 1984). The interest in 3,3-bis(2-imidazolyl)propionic acid (HBIP) as a ligand is mainly due to the flexibility of the molecule which allows it to accomodate the preferred geometries of most transition metal ions. This ligand was first obtained in the solid state as a monohydrate, $\mathrm{C}_{9} \mathrm{H}_{11} \mathrm{~N}_{4} \mathrm{O}_{2} . \mathrm{H}_{2} \mathrm{O}$ (HBIP. $\mathrm{H}_{2} \mathrm{O}$, hereafter referred to as HBIP-1), the crystal structure of which has been reported (Gimeno. Soto. Sancho, Dahan \& Legros, 1992). In the course of our experiments, routine X-ray powder analysis of the starting materials showed that another crystalline phase can be obtained depending on the conditions of crystallization. Thermogravimetric analysis indicated
that this new phase (hereafter referred to as HBIP2) is a hemihydrate, $\mathrm{C}_{4} \mathrm{H}_{10} \mathrm{~N}_{4} \mathrm{O}_{2} \cdot 0.5 \mathrm{H}_{2} \mathrm{O}$. The crystal structure of HBIP-2 was determined in order to compare the molecular conformation and the hydrogen-bonding network in the two crystalline hydrates.

HBIP-2
HBIP-1 is triclinic, while HBIP-2 is monoclinic. In both hydrates the HBIP molecules are in a zwitterionic form, containing - COO^{-}and -(imidazole) H^{+}residues. The asymmetric unit (Fig. 1) of the crystal structure of HBIP-2 consists of two crystallographically independent HBIP zwitterions and one molecule of water of crystallization linked by hydrogen bonding. The imidazole rings are planar with bond distances and angles (Table 2) similar to those reported for other compounds containing imidazole (Orpen. Brammer, Allen. Kennard. Watson \& Taylor, 1989; Martinez. Legros. Soto \& Sancho. 1991). The flexibility of the HBIP molecule is well reflected in the difference between the conformations of the zwitterions in HBIP-2 and HBIP-1, as indicated by the dihedral angles between the imidazole groups and the carboxylate group of each molecule (Table 3).

Fig. I. View of the astmmetric unit of HBIP-2 showing the labelling of the non- H atoms. Displacement ellipsoids are shown at the 50% probability lesel. H atoms are drame as small circles of arbitrars radii.

The crystal structures of both hydrates are characterized by strong intermolecular hydrogen bonds between the carboxylate group, the imidazole rings and the water molecules. The details of the hydrogen-bonding contacts in HBIP-2 are given in Table 4 and represented in Fig. 2.

The difference in the hydrogen-bonding scheme between crystals of HBIP-1 and HBIP-2 is reflected in the IR spectra and in the difference of the melting points of the two phases (HBIP-1 m.p. 530 K and HBIP-2 m.p. 513 K).

Fig．2．The hydrogen－bonding scheme：hydrogen bonds involving H atoms of the asymmetric unit are drawn as dotted lines． N and O atoms are drawn as black circles．

Experimental

Synthesis of HBIP was carried out according to the method described by Joseph，Leigh \＆Swain（1977）．The HBIP：H2O ratio is affected by the crystallization method；the crystals of the hemihydrate HBIP－2（HBIP： $\mathrm{H}_{2} \mathrm{O}$ ratio $1: 0.5$ ）were grown by slow evaporation at room temperature of an aqueous solution of the monohydrate HBIP－1（HBIP： $\mathrm{H}_{2} \mathrm{O}$ ratio 1：1）． The crystals obtained were colourless needles．The HBIP：H2O ratio for each hydrate was checked by thermogravimetric analysis．

Crystal data

$2 \mathrm{C}_{4} \mathrm{H}_{10} \mathrm{~N}_{4} \mathrm{O}_{2} . \mathrm{H}_{2} \mathrm{O}$
$M_{1}=430.42$
Monoclinic
$P 2_{1} / n$
$a=9.484(2) \AA$
$b=7.812(2) \AA$
$c=26.171(5) \AA$
$\beta=94.64$（3）${ }^{\circ}$
$V=1932.6(7) \AA^{3}$
$Z=4$
$D_{1}=1.48 \mathrm{Mg} \mathrm{m}^{-3}$
$D_{i,}$ not measured

Data collection

Enraf－Nonius CAD－4 diffractometer
$\omega / 2 \theta$ scans
Absorption correction： none
1881 measured reflections
1881 independent reflections 1058 observed reflections
$[I>3 \sigma(I)]$

Refinement

Refinement on F
$R=0.040$
$n \cdot R=0.043$

Mo $K Q$ radiation
$\lambda=0.71069 \AA$
Cell parameters from 25 reflections
$\theta=5.3-13.3^{\circ}$
$\mu=0.112 \mathrm{~mm}^{-1}$
$T=293 \mathrm{~K}$
Needle
$0.4 \times 0.06 \times 0.02 \mathrm{~mm}$
Colourless
$S=2.44$
1058 reflections
196 parameters
$w=1 /\left[\sigma^{2}(F)+0.00008 F^{2}\right]$
$(\Delta / \sigma)_{\text {max }}=0.0027$

Atomic scattering factors from International Tables for X－ray Crystallography （1974，Vol．IV，Table 2．2B）

Table 1．Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $\left(\AA^{2}\right)$

	x	$!$	－	$U_{\text {（4）}} / U_{\text {w凶 }}$
（）1	0.878 .5 （5）	$-0.1478(5)$	0．4461（1）	0.0448
（）2	（1．8820（4）	（0．1361（5）	0．4431（1）	0.0359
03	0．942）（5）	0.5722 （5）	0．550）3（2）	0．0．394
（）11	0．8405（4）	$0.075 \times(5)$	0．8042（1）	0.0 .391
012	（1）．7224（4）	0.1004 （5）	0．8723（1）	0.0345
N1	（1）．7248（5）	0.45 .49 （6）	0．4875（2）	0.0286
N 2	0．5711（5）	0.2674 （6）	0．4．594（2）	0．0280
N	0．5479（5）	0.0 .377 （6）	$0.5798(2)$	0.0282
N 4	$0.6520(4)$	0． 2644 （6）	0.6170121	（1）．0271
N11	0．573＋（5）	（1）．66．56（6）	（0．784．3（2）	0．0225－
N12	0．4827（5）	$0.680 \times(6)$	0．8．574（2）	0.0267
N13	$0.4210(5)$	$0.23 .36(6)$	$0.76 .5 \times 12)$	0.0 .348
N 14	0.3305 （5）	0.2626 （6）	$0.840112)$	0.03 .35
CI	$0.8+99(6)$	－0．00135（9）	$0.4625(2)$	$0.0 .33(2)$
C2	0.76 .59 （6）	－0．0053（7）	0.509 .3 （2）	$0.030(2)$
（ 3	（0．7424（6）	（1）1720（7）	$0.533512)$	$0.025(1)$
C4	0.6793 （6）	（1）29＋5（7）	（1）．4941（2）	$0.023(1)$
C．5	0．6450（6）	0.5281 （8）	（1．4470（2）	（0．01．37（2）
C6	$0.5+97(6)$	（1）．412x（x）	（1）．294（2）	$0.03712)$
（ 7	0．6＋67（6）	0． 15.54 （ 8 ）	$0.576512)$	$0.1027(2)$
C 8	0． 18.860 （6）	$0.0762(x)$	116245（2）	$0.103312)$
（9）	$0.549+(6)$	$0.2133(7)$	1）．6482（2）	$0.02 \mathrm{x}(2)$
（1）	0．7．567（6）	0．1530）（x）	0． $8.311+(2)$	$0.02712)$
C12	$0.7051(6)$	（1）．329＋（7）	（）．8109（2）	$0.032(2)$
C13	$0.57(6)(6)$	1）． 3893 （7）	（1）．834．3（2）	（0．027（2）
Cl	$0.5453(6)$	0.5771 （7）	0．8253（2）	0.025 （2）
C15	0．5278（6）	$0.8318(8)$	$0.790312)$	0.036 （2）
C16	$0.4726(6)$	$0.8408(8)$	0．8355（2）	$0.03612)$
$(17$	（0． $4+23$（6）	$0.2912(7)$	0.8127 （2）	$0.025(2)$
C18	0．2870（7）	$0.1621(x)$	0．76．34（2）	0.041 （2）
C19	$0.2309(7)$	$0.1772(8)$	0.80×312	（1）．041（2）

Table 2．Selected geometric parameters $\left(\AA^{\circ},{ }^{\circ}\right)$

（）－C1	1．244（7）	N13－C17	$1.307(6)$
O2－C1	1．251（7）	N13－（18	1.385 （7）
O）1－－Cl1	$1.246(6)$	$\mathrm{NH}-\mathrm{ClO}^{\text {a }}$	1.347 （6）
O12－Cl1	1.270 （6）	$\mathrm{NH}-\mathrm{Cl} 9$	1.379 （7）
$\mathrm{Ni}-\mathrm{Cl}$	1.341 （6）	C1－C？	1．51＋（7）
$\mathrm{Ni}-\mathrm{CS}$	1．376（7）	C2－C3	1.546 （7）
$\mathrm{N} 2-\mathrm{Cl}$	$1.331(6)$	C3－C4	1.495 （7）
N2－C6	1．386（7）	C3－C7	1．5019（7）
$\mathrm{N} 3-\mathrm{C} 7$	1.317 （6）	C5－C6	1．3．31（7）
$\cdots 3-\mathrm{C}$	$1.38 .3(6)$	Cx－Cy	1.354 （7）
$\mathrm{NH}-\mathrm{Cl}_{7}$	1.360 （6）	Cll－Cl2	$1.535(7)$
$\mathrm{NH}-\mathrm{CO}$	1.378161	C12－C13	1.537 （7）
Nil－Cl4	1.322 （6）	C13－C14	$1.501(7)$
NH CO C 5	1.382171	CI3－C17	$1.505(7)$
N12－C14	$1.340(6)$	C15－C16	$1.334(8)$
N12－Cl6	$1.376(7)$	C18－C19	$1.33317)$
C＋－N1－C5	$1(19.0)(5)$	N3－C7－C3	125．8（5）
（4－N2－C6	119.0 （5）	$\mathrm{NH}-\mathrm{C} 7-\mathrm{C} 3$	122.6 （5）
C7－N3－CX	114．9（5）	$\mathrm{N} 3-\mathrm{Cx}-\mathrm{C} 9$	110.8 （5）
（7－N4－C9	107．2（5）	$\mathrm{N} 4-\mathrm{CY}-\mathrm{CX}$	105.5151
CH－NH－C15	108.3 （5）	O11－（11－O12	123．4（6）
CH－N12－Cl6	$1(17.9$（5）	O11－C11－C12	116.9 （5）
C17－N13－C18	1（14．6（5）	O12－C゙11－C12	119.5 （5）
C17－N1＋－Cl9	116.8 （5）	CII－－Cl2－Cl3	113．3（5）
O）－（1－（）2	125.6 （5）	C12－Cl3－Cは	111.1 （5）
（1）－Cl－C2	114．5（6）	C12－Cl．3－C17	$111.5(7)$
（）2－－${ }^{(1-C 2}$	119.9 （6）	$\mathrm{CH}-\mathrm{Cl} 3-\mathrm{Cl}$	109.1 （5）
C1－C2－C3	115．2（5）	$\mathrm{NH}-\mathrm{Cl}-\mathrm{N} 12$	108.8 （5）
C2－C3－C4	$110.7(4)$	NII－Cll－Cl3	126.8 （5）
C2－C3－C7	109.9 （5）	$\mathrm{NL2}-\mathrm{Cl}+\mathrm{Cl} 3$	124．3（5）

$\mathrm{C4}-\mathrm{C} 3-\mathrm{C} 7$	$109.8(t)$	N11-C15-C16	107.4(5)
$\mathrm{N} 1-\mathrm{C}+-\mathrm{N} 2$	$107 .+(5)$	N12-Cl6-C15	$107.6(6)$
$\mathrm{Ni}-\mathrm{Cl}-\mathrm{C} 3$	124.9(5)	N13-C17-N14	112.04 .5
$\mathrm{N} 2-\mathrm{C}+-\mathrm{C} 3$	127.7 (5)	N13-C17-Cl3	$120.0(5)$
$\mathrm{NI}-\mathrm{CS}-\mathrm{C} 6$	$107.5(6)$	N14-C17-Cl3	$121.9(5)$
$\mathrm{N} 2-\mathrm{C6}-\mathrm{C} 5$	107.1(6)	N13-C18-C19	$110.8(6)$
$\mathrm{N} 3-\mathrm{C} 7-\mathrm{N}+$	$111.6(5)$	NIt- -Cl9--ClX	1058.51

Table 3. Dihedral angles $\left({ }^{\circ}\right)$ in the HBIP zwitterions in HBIP- 2 and HBIP- 1

The planes of the imidazole rings are denoted (1) and (3) whether they contain atoms N 1 (or NII) or N3 (or N13): the planes of the carboxylate groups are denoted (2).

Dihedral	HBIP-2	HBIP-2	
angle	Molecule (I)	Molecule (II)	HBIP-1
$(1)-(2)$	$79.2(3)$	$166.3(3)$	102.8
$(1)-(3)$	$108.3(3)$	$76.0(3)$	66.7
$(2)-(3)$	$37.3(3)$	$88.2(3)$	10.5

Table 4. Hydrogen-bonding geometry $\left({ }^{\circ},^{\circ}\right)$

D - $\mathrm{H} \cdots \mathrm{A}$	H . A	D. . A	D-H. . A
$\mathrm{N} 1-\mathrm{HI} \cdots \mathrm{O} 3$	$1.65+(7)$? 691 (7)	168.3 (6)
O3-H31...O2'	1.96 (5)	2.82? (6)	$16 \geq$ (t)
$\mathrm{O} 3-\mathrm{H} 32 \cdots \mathrm{Ol} 2^{\prime \prime}$	1.82 (5)	$2.66+(6)$	$160(5)$
$\mathrm{N} 2-\mathrm{H} 2 \cdots \mathrm{~N} 3^{11}$	1.825 (5)	$2.796(6)$	152.2(5)
$\mathrm{N} 4-\mathrm{H} 4 \cdots \mathrm{Ol}{ }^{\prime \prime}$	$1.892(6)$	2.887 (6)	1.56 .8 (5)
N11-HII..OII"	1.591 (6)	2.613 (6)	$16.3 .+(6)$
$\mathrm{N} 12-\mathrm{HI2} \cdots \mathrm{Ol}^{\prime \prime}$	$1.58+(6)$	$2.608(6)$	$16.3 .5(6)$
$\mathrm{NH}+\mathrm{H} 1+\cdots \mathrm{O}{ }^{\prime \prime}$	1.819 (6)	$2.81+(6)$	1.56 .8 (6)

Symmetry codes: (i) $2-x, 1-x, 1-z:$ (ii) $\frac{2}{2}-x, \frac{1}{2}+\frac{2}{\frac{2}{2}}-Z$ (iii) $1-x,-y, 1-z$ (iv) $x-\frac{1}{2}, \frac{1}{2}-x, \frac{1}{2}+z$

As a result of the small number of observed reflections available, only N and O atoms were refined anisotropically: C atoms were assigned isotropic displacement parameters. All H atoms were clearly located on difference Fourier maps and were assigned an arbitrary isotropic displacement parameter. $U=0.07 \AA^{2}$; the positions of the H atoms of the water molecule were refined using constrained geometry ($\mathrm{O}-\mathrm{H}=0.9 \AA$. $\mathrm{H}-\mathrm{O}-\mathrm{H}=100^{\circ}$); the contributions of the other H atoms were computed assuming idealized geometry $(\mathrm{C}-\mathrm{H} . \mathrm{N}-\mathrm{H}=$ 1.05 Å).

Data collection: CAD-4 Software (Enraf-Nonius. 1989). Data reduction: CRYSTALS (Watkin, Carruthers \& Betteridge, 1988). Program(s) used to solve structure: SHELXS86 (Sheldrick, 1985). Program(s) used to refine structure: CRYSTALS. Molecular graphics: CRYSTALS. Software used to prepare material for publication: CRYSTALS.

Financial support from DGICYT(PB93-0688) is gratefully acknowledged.

[^0]
References

Creighton, T. E. (1984). In Proteins. Structures and Molecular Properties. New York: W. H. Freeman.
Enraf-Nonius (1989). CAD-4 Sofiware. Version 5.0. Enraf-Nonius. Delft, The Netherlands.
Gimeno. B.. Soto, L.. Sancho, A., Dahan. F. \& Legros, J.-P. (1992). Actu Crast. C48. 1671-1673.

Joseph. M., Leigh. T. \& Swain, M. L. (1977). Simhesis, pp. 4.59-461
Martine». M. A.. Legros. J.-P.. Soto. L. \& Sancho. A. (1991). Polvhedron. 10. 1031-1036.
Orpen. A. G.. Brammer. L... Allen. F. H.. Kennard. O.. Watson. D. G \& Taylor, R. (1989). J. Chom. Soc: Dalton Trans. S1-S19.
Sheldrick. G. M. (1985). SHELXS86. Program for the Solution of Cristal Structures. University of Götingen. Germany:
Wathin. J. D.. Carruthers. J. R. \& Betteridge. P. W. (1988). CRYSTALS Llacr's Guide. University of Oxford. England.

Acta Cryst. (1996). C52, 1228-1230

4-Methoxyphenyl 2-Nitrophenyl Sulfide

R. A. Howie and J. L. Wardell.
Department of Chemistr:: Universiţ: of Aberdeen, Meston
Walk, Old Aberdeen AB9 2UE, Scotland
(Receared 24 Februar 1995; accepted 17 Nomember 1995)

Abstract

An intramolecular $\mathrm{S} \cdots \mathrm{O}$ interaction is present in the title compound, $\left(2-\mathrm{O}_{2} \mathrm{NC}_{6} \mathrm{H}_{4}\right) \mathrm{S}\left(\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{OMe}-4\right)$, with $\mathrm{S} \cdots \mathrm{O}=2.641(2) \AA$ and $\overline{\mathrm{C}}-\mathrm{S} \cdots \mathrm{O}=177.69(8)^{\circ}$.

Comment

The literature contains various examples of compounds having non-bonded $\mathrm{S} \cdots \mathrm{O}$ contacts shorter than the sum of the van der Waals radii ($3.25 \AA$) (Kucsman \& Kapovits. 1985). A typical group of such compounds is those containing the 2 -nitroarylthio unit. $2-\mathrm{O}_{2} \mathrm{~N}-R-$ $\mathrm{C}_{6} \mathrm{H}_{3} \mathrm{~S}$, as illustrated by the title compound. (I). The intramolecular $\mathrm{S} \cdots \mathrm{Ol}$ distance in (I) is 2.641 (2) \AA. with a C7-S \cdots Ol angle of $177.69(8)^{\circ}$; the value of Cl $\mathrm{S} \cdots \mathrm{Ol}$ is $75.16(8)^{\circ}$. The nitro group is almost coplanar with the benzene ring ($\mathrm{Cl} 1-\mathrm{C} 6$) to which it is attached, the angle between the planes of the nitro and aryl units being $5.5(5)^{2}$. In effect, the nitro group is rotated about the $\mathrm{N}-\mathrm{C} 2$ bond such that Ol and O 2 lie on either side of the Cl-C6 plane, at a distance of ca $0.1 \AA$ in each case. There are no intermolecular contacts involving the S atom, other than the $\mathrm{S} \cdots \mathrm{O}$ separations, which are at distances less than the sum of the appropriate van der Waals radii.

(I)

The intramolecular $\mathrm{S} \cdots \mathrm{O}$ separations in solid 2-nitroaryl sulfides are generally between 2.62 and $2.72 \AA$ (Kucsman \& Kapovits, 1985). A shorter separation of $2.590 \AA$ was reported for the polycyclic derivative 9 -

Acta Crystallographica Section C ISSN 0108-2701 © 1996

(C) 996 International Union of Crystallography

Printed in Great Britain - all rights reserved

[^0]: Lists of structure factors, anisotropic displacement paranketers. Hatom coordinates and complete geometry have been deposited with the IUCr (Reference: PA1214). Copies may be obtained through The Managing Editor. International Union of Crystallography. 5 Abbey Square. Chester CH 2 HU , England.

